Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMahouti, Peyman
dc.contributor.authorBelen, Aysu
dc.contributor.authorTarı, Özlem
dc.contributor.authorBelen, Mehmet Ali
dc.contributor.authorKarahan, Serdal
dc.contributor.authorKoziel, Slawomir
dc.date.accessioned2023-05-17T08:19:56Z
dc.date.available2023-05-17T08:19:56Z
dc.date.issued2023en_US
dc.identifier.citationMahouti, P., Belen, A., Tari, O., Belen, M. A., Karahan, S., & Koziel, S. (2023). Data-driven surrogate-assisted optimization of metamaterial-based filtenna using deep learning. Electronics, 12(7), 1584.en_US
dc.identifier.issn2079-9292
dc.identifier.urihttps://doi.org/10.3390/electronics12071584
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3855
dc.description.abstractIn this work, a computationally efficient method based on data-driven surrogate models is proposed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a module that simultaneously pre-filters unwanted signals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements, and their complex interrelations affecting the scattering response, FSS optimization is a challenging task. Herein, a deep-learning-based algorithm, Modified-Multi-Layer-Perceptron (M2LP), is developed to render an accurate behavioral model of the unit cell. Subsequently, the M2LP model is applied to optimize FSS elements being parts of the Filtenna under design. The exemplary device operates at 5 GHz to 7 GHz band. The numerical results demonstrate that the presented approach allows for an almost 90% reduction of the computational cost of the optimization process as compared to direct EM-driven design. At the same time, physical measurements of the fabricated Filtenna prototype corroborate the relevance of the proposed methodology. One of the important advantages of our technique is that the unit cell model can be re-used to design FSS and Filtenna operating various operating bands without incurring any extra computational expenses.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofELECTRONICSen_US
dc.identifier.doi10.3390/electronics12071584en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMetamaterialsen_US
dc.subjectOptimizationen_US
dc.subjectDeep Learningen_US
dc.subjectFrequency Selective Surfacesen_US
dc.subjectFiltering Antennaen_US
dc.subjectFREQUENCY-SELECTIVE SURFACESen_US
dc.subjectHORN ANTENNA DESIGNen_US
dc.subjectDIELECTRIC LENSen_US
dc.subjectRIDGE HORNen_US
dc.subjectWIDE-BANDen_US
dc.subjectULTRAWIDEBANDen_US
dc.subjectPERFORMANCEen_US
dc.subjectGAINen_US
dc.subjectINTERFERENCEen_US
dc.subjectEFFICIENCYen_US
dc.titleData-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learningen_US
dc.typearticleen_US
dc.departmentFen-Edebiyat Fakültesi, Matematik-Bilgisayar Bölümüen_US
dc.authorid0000-0001-7127-5915en_US
dc.identifier.volume12en_US
dc.identifier.issue7en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorTarı, Özlem
dc.authorwosidAAT-4679-2021en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:000971066000001en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster