dc.contributor.author | Akıllı, Mahmut | |
dc.contributor.author | Yılmaz, Nazmi | |
dc.contributor.author | Akdeniz, K. Gediz | |
dc.date.accessioned | 2022-12-13T13:30:39Z | |
dc.date.available | 2022-12-13T13:30:39Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.citation | Akıllı, M., Yılmaz, N., & Akdeniz, K. G. (2021). The ‘wavelet’entropic index q of non-extensive statistical mechanics and superstatistics. Chaos, Solitons & Fractals, 150, 111094. | en_US |
dc.identifier.issn | 0960-0779 | |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2021.111094 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12294/3102 | |
dc.description.abstract | Generalized entropies developed for non-extensive statistical mechanics are derived from the Boltzmann-Gibbs-Shannon entropy by a real number q that is a parameter based on q-calculus; where q is called ‘the entropic index’ and determines the degree of non-extensivity of a system in the interval between 1 and 3. In a very recent study, we introduced a new calculation method of the entropic index q of non-extensive statistical mechanics. In this study, we show the mathematical proof of this calculation method of the entropic index. Firstly, we propose that the number of degrees of freedom, n is proportional to the inverse of the wavelet scale index,[Formula presented], where iscale is a wavelet based parameter called wavelet scale index that quantitatively measures the non-periodicity of a signal in the interval between 0 and 1. Then, by applying this proposition to the superstatistics approach, we derive the equation that expresses the relationship between the entropic index and the wavelet scale index, q=1+2iscale. Therefore, we name this q-index as the ‘wavelet’ entropic index. Lastly, we calculate the Abe entropy, Landsberg-Vedral entropy and q-dualities of the Tsallis entropy of the Logistic Map and Hennon Map using the ‘wavelet’ entropic index, and based on our results, compare and discuss these generalized entropies. © 2021 Elsevier Ltd | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Chaos, Solitons and Fractals | en_US |
dc.identifier.doi | 10.1016/j.chaos.2021.111094 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Degrees of Freedom | en_US |
dc.subject | Generalized Entropies | en_US |
dc.subject | Non-Extensive Statistical Mechanics | en_US |
dc.subject | Superstatistics | en_US |
dc.subject | Wavelet Scale Index | en_US |
dc.subject | ‘Wavelet’ Entropic Index | en_US |
dc.title | The 'wavelet' entropic index q of non-extensive statistical mechanics and superstatistics | en_US |
dc.type | article | en_US |
dc.department | Meslek Yüksekokulu, Tıbbi Görüntüleme Teknikleri Programı | en_US |
dc.authorid | 0000-0002-8656-2594 | en_US |
dc.identifier.volume | 150 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.institutionauthor | Akıllı, Mahmut | |
dc.authorwosid | GCB-4085-2022 | en_US |
dc.authorscopusid | 57044819700 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.identifier.wos | WOS:000687259500012 | en_US |
dc.identifier.scopus | 2-s2.0-85107775593 | en_US |