Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYigit, Fatih
dc.contributor.authorDonmez, Ilknur
dc.contributor.authored.: Kahraman, C.
dc.contributor.authored.: Tolga, AC.
dc.contributor.authored.: Onar, SC.
dc.contributor.authored.: Cebi, S.
dc.contributor.authored.: Oztaysi, B.
dc.contributor.authored.: Sari, IU.
dc.date.accessioned2022-12-13T08:43:54Z
dc.date.available2022-12-13T08:43:54Z
dc.date.issued2022en_US
dc.identifier.citationPalop, J. J., Mucke, L., & Roberson, E. D. (2010). Quantifying biomarkers of cognitive dysfunction and neuronal network hyperexcitability in mouse models of Alzheimer’s disease: depletion of calcium-dependent proteins and inhibitory hippocampal remodeling. In Alzheimer's Disease and Frontotemporal Dementia (pp. 245-262). Humana Press, Totowa, NJ.en_US
dc.identifier.isbn9783031091728
dc.identifier.urihttps://doi.org/10.1007/978-3-031-09173-5_21
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3096
dc.description.abstractClean production and resource efficiency are two major concerns of contemporary manufacturing processes. The main reason is that the resources and environment are significant concerns for the future. The study proposes the assessment of risks in a butchery unit in a major retail company. The regular assessment using impact and probability requires concrete input from the relevant expert. The possible impact and probability are challenging to measure because of their vagueness in nature. The proposed study uses the aggregation of fuzzy opinions under group decisions to assess the impact and probability of each risk in the butchery unit for the first phase. The outputs of the first phase are the impact and probability values for each risk based on group decisions under fuzzy logic. The second phase involves converting global risk values to classified risk groups. In our study, Fuzzy-C-Means will be used to classify risks based on their importance to 3 groups. By applying classification, the responsible for the relevant actions can take preventive actions for the risks that deserve the most attention. The proposed methodology is applied to a real data set of risk analysis. Results of the research demonstrate that the use of fuzzy logic in the assessment of risk analysis shows a promising approach and is accepted as an improvement over the existing practice to define the risk and classify it. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.identifier.doi10.1007/978-3-031-09173-5_21en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy C-means Clusteringen_US
dc.subjectFuzzy Logicen_US
dc.subjectGroup Decision Makingen_US
dc.subjectRisk Analysisen_US
dc.subjectRisk Classificationen_US
dc.titleA Proposed Methodology for Risk Classification Using Fuzzy Group Decision Making and Fuzzy C-Meansen_US
dc.typeconferenceObjecten_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0002-7919-544Xen_US
dc.authorid0000-0002-8344-1180en_US
dc.identifier.volume504 LNNSen_US
dc.identifier.startpage160en_US
dc.identifier.endpage167en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.institutionauthorYiğit, Fatih
dc.institutionauthorDönmez, İlknur
dc.authorwosidAAZ-6671-2020en_US
dc.authorwosidAAV-7386-2020en_US
dc.authorscopusid57218571022en_US
dc.authorscopusid57170247500en_US
dc.identifier.wosWOS:000889380800021en_US
dc.identifier.scopus2-s2.0-85135025488en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster