Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAtas, Pinar Karadayi
dc.date.accessioned2024-02-16T12:48:40Z
dc.date.available2024-02-16T12:48:40Z
dc.date.issued2024en_US
dc.identifier.citationKaradayı Ataş, P. (2024). Exploring the Molecular Interaction of PCOS and Endometrial Carcinoma through Novel Hyperparameter-Optimized Ensemble Clustering Approaches. Mathematics, 12(2), 295.en_US
dc.identifier.issn22277390
dc.identifier.urihttps://doi.org/10.3390/math12020295
dc.identifier.urihttps://hdl.handle.net/20.500.12294/4060
dc.description.abstractPolycystic ovary syndrome (PCOS) and endometrial carcinoma (EC) are gynecological conditions that have attracted significant attention due to the higher prevalence of EC in patients with PCOS. Even with this proven association, little is known about the complex molecular pathways that connect PCOS to an increased risk of EC. In order to address this, our study presents two main innovations. To provide a solid basis for our analysis, we have first created a dataset of genes linked to EC and PCOS. Second, we start by building fixed-size ensembles, and then we refine the configuration of a single clustering algorithm within the ensemble at each step of the hyperparameter optimization process. This optimization evaluates the potential performance of the ensemble as a whole, taking into consideration the interactions between each algorithm. All the models in the ensemble are individually optimized with the suitable hyperparameter optimization method, which allows us to tailor the strategy to the model's needs. Our approach aims to improve the ensemble's performance, significantly enhancing the accuracy and robustness of clustering outcomes. Through this approach, we aim to enhance our understanding of PCOS and EC, potentially leading to diagnostic and treatment breakthroughs.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofMATHEMATICSen_US
dc.identifier.doi10.3390/math12020295en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBioinformaticsen_US
dc.subjectEndometrial Canceren_US
dc.subjectMachine Learningen_US
dc.subjectMathematical Modelingen_US
dc.subjectMolecular Biologyen_US
dc.subjectPCOSen_US
dc.titleExploring the Molecular Interaction of PCOS and Endometrial Carcinoma through Novel Hyperparameter-Optimized Ensemble Clustering Approachesen_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0003-0924-1196en_US
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorAtas, Pinar Karadayi
dc.authorwosidABB-2911-2021en_US
dc.authorscopusid57206787354en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.wosWOS:001151004000001en_US
dc.identifier.scopus2-s2.0-85183192674en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster