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Abstract
This paper proposes a novel framework for transition from the ordinary square-pixel-
based image processing (SIP) domain to the hexagonal-pixel-based (HIP) domain
(FTSH). The conventional image acquisition and processing are based on square pixels.
However, HIP can provide promising advantages in many respects, such as degrading the
curse of data size and accordingly reducing the processing time. HIP did not achieve
satisfactory attraction because all software, including libraries, methods and structures, as
well as mathematical operations and methodologies developed to date, are aimed at SIP.
In this study, we propose a framework containing the corresponding HIP equivalents of
some basic SIP methods and operations. In addition, the results of these basic operations
in both SIP and HIP areas are presented comparatively. Since there is no common and
standardized framework or library for HIP, this study can be used by other researchers
who wish to enter the HIP. Simulation results support the competitive performance of
HIP, and this promising performance can be carried far beyond when properly handled
and focused.

Keywords Hexagonal image processing . Square image processing . Framework

https://doi.org/10.1007/s11042-019-08487-z

* Taner Cevik
tanercevik@aydin.edu.tr

Mustafa Fettahoglu
mustafafettahoglu@stu.aydin.edu.tr

Nazife Cevik
nazifecevik@arel.edu.tr

Serdar Yilmaz
serdaryilmaz1@aydin.edu.tr

1 Department of Software Engineering, Istanbul Aydin University, Istanbul, Turkey
2 Department of Computer Engineering, Istanbul Aydin University, Istanbul, Turkey
3 Department of Computer Engineering, Istanbul Arel University, Istanbul, Turkey

Published online: 18 December 2019

Multimedia Tools and Applications (2020) 79:7021–7048

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-08487-z&domain=pdf
mailto:tanercevik@aydin.edu.tr


1 Introduction

Image processing is the imitation of human visual system by using a computer. In the human
visual system, light enters the eye through the pupil behind the cornea and is then projected by
the lens into the spherical interior of the back of the eye. In this section, the retina, light is
converted into electrical signals. Photoreceptors are found in the deepest and thinnest part of
the retina called fovea. There are two types of receptors in the retina, namely rods and cones.
Cones that are specialized in high-resolution and color vision, contribute to the day-time
vision. These photoreceptors reside in the central region of the fovea. In the contrary, rods are
specialized on colorless and dark stimulus, therefore contributes to the night time vision. The
settlement of the photoreceptors along the circular retinal surface, is shown in Fig. 1(a). Here,
the bigger circles relate to the rods and the littler circles to the cones. The most remarkable
point to see is that, the general topology in this chart is generally hexagonal. This is on the
grounds that, as will be shown later, all normally deformable round structures are bundled in
the best two measurements in a hexagonal example, for example, in honeycombs. A case of an

Fig. 1 (a) Settlement of cones and rods along the fovea [39]. (b) A zoomed in view of a portion of the foveal
region [10]
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all-inclusive segment of the foveal district of the retina area demonstrating this conduct is
illustrated in Fig. 1 (b) [35].

Image processing is the art of imitating the human vision and transferring it to
computer vision. The data in the physical environment, which is actually light, is
continuous and some special sensors are used to obtain this continuous data. These
sensors differ in the context of the light spectrum which they are sensitive and are used
in square or rectangular arrays. Although light data is continuous, computers can only
process digital data. Therefore, continuous light data should be sampled and digitized.
Since square or rectangular sensor arrays are used, the latter processes at the computer
side have been designed accordingly. Therefore, pixel, which is the smallest data unit of
computerized digitized data, is also designed as a square. However, sampling light data
on a hexagonal lattice and then maintaining the subsequent processes at hexagonal
domain can change many things and yield promising results. The hexagonal geometry
has been investigated for several decades. It had been a conjecture that the best way to
partition a plane into regions with equal areas can be done by means of hexagons till it
was proved by Hales [18, 19]. Besides the natural hexagonal arrangement of photore-
ceptors in fovea, another hexagonal natural encounter of hexagon geometry is the
honeycombs.

The hexagonal lattice has some advantages over the square lattice. Firstly, in accor-
dance with the isopimetric theorem, a hexagonal circle occupies more space than any
other closed planar curve except circle. However, it is not possible to cover a plane
totally by circles. This means that the sampling density of a hexagonal cage is higher

Fig. 2 The illustration of internal coverage by square and hexagonal pixels

Fig. 3 The illustration of external coverage by square and hexagonal pixels
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than that of a square cage. Secondly, in a hexagonal lattice each hexagon has six
equidistant neighbors with sharing an edge with each [20]. However, a square has two
different types of neighbors. One group of neighbors reside on vertical and horizontal
axis, and other group of neighbors reside on diagonal, which are further distant than the
first group. The central pixel shares an edge with the first group of neighbors, in contrast,
share a corner with the neighbors belonging to the second group. This violates the
homogeneity and hardens the process of edge tracking via the neighbors. Furthermore,
hexagonal pixels can achieve a better resolution when compared to square pixels. The
superiority of hexagonal pixels over square pixels in terms of better higher resolution
providence is described as follows:

Let r be the radius of a circle that is the smallest unit area in the spatial domain. The
smallest inscribing square and hexagon to cover the area of this circle have the side lengths

r
ffiffiffi
2

p
and r respectively as shown in Fig. 2.

Fig. 4 Variations of addressing schemes on hexagonal grid by using two skewed axes
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The comparison in terms of coverage, which also points to the resolution, is performed as
follows. Let Csqr and Chex denote the coverage of square and hexagonal pixels respectively and
calculated as:

Csqr ¼ Asqr

Acir
¼ r

ffiffiffi
2

p� �2
πr2

¼ 2

π
ð1Þ

Chex ¼ Ahex

Acir
¼ 6 r2√3=2

� �
=2

πr2
¼ 3√3=2

π
ð2Þ

where Acir, Asqr and Ahex identify the areas of circle, square and hexagon respectively.
Thus, it can be inferred from Eq. (1–2):

Eff cov ¼
Chex

Csqr
¼

3√3=2
π
2

π

¼ 3√3
4

¼ 1:3 ð3Þ

where Effcov denotes the coverage efficiency.
In addition to the internal coverage efficiency, the amendment in the unnecessary con-

sumption through external coverage (Fig. 3) can also be measured as follows:

Ardntsquare ¼ Asqr−Acir ¼ 4r2−πr2 ¼ r2 4−πð Þ ð4Þ

Ardnthex ¼ Ahex−Acir ¼ 2
ffiffiffiffiffiffiffi
3r2

p
−πr2 ¼ r2 2

ffiffiffi
3

p
−π

� �
ð5Þ

Thus, it can be inferred from Eq.(4–5):

Rdntcov ¼
Ardntsquare

Ardnthex
¼ r2 4−πð Þ

r2 2
ffiffiffi
3

p
−π

� � ¼ 4−π
2

ffiffiffi
3

p
−π

≅2:6875 ð6Þ

where Rdntcov denotes the coverage redundancy.
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As identified by Eq. (3) and Eq. (6), using hexagonal pixels increases the coverage
efficiency and degrades the coverage redundancy.
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Fig. 6 Sample hierarchical addressing schemes (a) Pyramid (b) Second-level aggregate
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Fig. 8 Neighbourhood definitions (a) Square 4-connected neighbourhood (b) Square 8-connected
neighbourhood (c) Hexagonal neighbourhood
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Fig. 9 The mean, weighted average and Gaussian kernels on square and hexagonal domains (a) Square and
hexagonal mean kernels (b) Square and hexagonal weighted average kernels. (c) Square and hexagonal Gaussian
kernels

Fig. 10 (a) The original Lena image (b) Lena blurred by the mean kernel on the square domain (c) Lena blurred
by the mean kernel on the hexagonal domain
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The proposed research studies on the use of hexagons during image processing have
focused mostly on coordinate mapping from the square area to the hexagon region. The

Fig. 11 Histograms of the images in Fig 10 (a) Histogram of the original Lena image (b) Histogram of Lena
blurred by the mean kernel on the square domain (c) Histogram of Lena blurred by the mean kernel on the
hexagonal domain
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most important part, however, is how to handle operations after the mapping phase.
Because, the system and its constituents, such as sensing elements, presentation hard-
ware, software, mathematics, etc., are built on the idea of square pixel logic. Therefore,
there are no standards or libraries or packages that are globally accepted for hexagonal
image processing [4]. Thus, in this study, it is intended to develop a framework on
hexagonal domain which performs some basic operations of image processing such as
blurring, edge detection, noise filtering and recognition. The results of these procedures
and their corresponding square-domain equivalents are also presented and compared. The
rest of the paper is organized as follows. Section 2 presents the operations accomplished
in hexagonal domain and their results, as well as the methodologies followed during
transition from SIP to HIP. Finally, Section 3 concludes the paper.

2 Framework for transition from square image processing to hexagonal
image processing (FTSH)

Hexagonal geometry can provide significant improvements in the area of image process-
ing. Studies so far have focused on the difficulty of mapping, and elegant methods have
been proposed to solve how the data in square pixels are represented by hexagonal
pixels. Though there are generally accepted ideas about the mapping process, there is no
agreed standard on how things will be handled after the mapping phase. Thus, FTSH is a
starting point to consider and illustrate how some basic operations can be performed in
the hexagonal domain.

2.1 Mapping from a square domain to a hexagonal domain

Since the points on a hexagonal grid are not aligned in two orthogonal directions, is not
always possible to represent the addresses of the points on a hexagonal grid with integer
Cartesian coordinates. As a solution for that can be benefiting from the nature of

Fig. 12 (a) The original Lena image (b) Lena blurred by the weighted average kernel on the square domain (c)
Lena blurred by the weighted average kernel on the hexagonal domain

Multimedia Tools and Applications (2020) 79:7021–70487030



hexagonal grids and assigning the axis of symmetry of the hexagon as the coordinate
axes. One of the easiest way is using two skewed axes that are 60° or 120° apart from
each other as depicted in Fig. 4. This way is efficient because, it is possible to address a
point on the hexagonal plane by two integer coordinates. A number of combinations can
be applied by rotating the skewed axes in any direction, however the coordinate is going
to stay same. Many studies proposed in the literature [2, 32, 34, 36, 37, 43, 44, 46,
48–50, 53, 54] have applied one of the addressing schemes illustrated in Fig. 4.

In addition to the two skewed axis addressing schemes, other alternative addressing
methods have been proposed. One of these is the three skewed axis scheme [22, 23],
using the three symmetric axes of the hexagon as depicted in Fig. 5 rather than two.
Although this addressing scheme appears to be advantageous for operations such as
rotation that involve high degree of symmetry, an increased burden is suffered in terms
of complex data structures and processing time, especially for non-symmetric
operations.

Another prominent addressing method is the hierarchical addressing scheme. In such
addressing schemes [3, 15–17, 26, 29, 30, 38, 47], hexagons are considered hierarchically,
such as in a pyramid architecture or in a sort of collection as shown in Fig. 6.

In FTSH, the idea of Overington [38] is pursued rather than the above-mentioned schemes.
That is, the hexagonal grid is treated as a rectangular grid with respect to row-column manner
as illustrated in Fig. 7.

The hexagons in the odd-numbered rows are shifted by a
ffiffiffi
3

p
=2 on the horizontal axis as

shown in Fig. 7. This forced-shifting does not cause a problem during the mapping process.
Most of the image processing operations require padding and neighborhood definitions.

The padding and neighborhood definition operations are easily handled on square domain.
However, for pixels located on the sides of the image in the hex grid, special processing is
required because of the mandatory shift. The challenges of padding and neighborhood
definition operations and the solutions that manage them are briefly described below.

2.2 Padding and neighborhood definition operations on hexagonal domain

Almost all image processing operations such as blurring, sharpening, edge detection, and so on
require neighborhood definitions. That is, these operations involve not only the reference pixel
itself, but also the intensity levels of the neighboring pixels. Thus, each pixel must have
neighboring pixels defined. As is known, there are two types of neighbor for each pixel in the
square area, because not all adjacent neighbors of a pixel are at equal distance from the
reference pixel. These are basically 4-connected and 8-connected neighbors, as shown in Fig. 8
(a-b). However, there is only one type of neighbor on the hexagonal grid. This is because all
adjacent neighbors are equidistant from the reference pixel as depicted in Fig. 8 (c). While
addressing the adjacent neighbors, regardless whether 4-connected or 8-connected, of a
reference pixel on the square domain, the row and column indices are easily used. Further-
more, this methodology is the same for all pixels in an image on the square grid. However, it is
not possible to apply the same methodology for the hexagonal domain. Because the indexes of
neighboring pixels are not uniform and differ depending on the row and column of the
reference pixel. As given in Algorithm 1, the solution is to treat each type differently, taking
into account the position of the reference pixel.

Multimedia Tools and Applications (2020) 79:7021–7048 7031



Multimedia Tools and Applications (2020) 79:7021–70487032



As clearly shown in Fig. 8, although any pixel in the square grid can be uniformly
addressed to its neighbors, the indexes in the hexagonal grid vary depending on whether the
reference pixel is in odd or even numbered rows. On the hexagonal grid, for pixel P1 with the
indices (i,j), the neighboring pixels are P11, P12, P13, P14, P15, P16 and their indices are (i,j + 1),

Fig. 13 Histograms of the images in Fig 12 (a) Histogram of the original Lena image (b) Histogram of Lena
blurred by the weighted average kernel on the square domain (c) Histogram of Lena blurred by the weighted
average kernel on the hexagonal domain
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(i-1,j + 1), (i-1,j), (i,j-1), (i + 1,j), (i + 1,j + 1) respectively. However, for pixel P2 with the
indices (i,j), the neighboring pixels are P21, P22, P23, P24, P25, P26 and their indices are (i,j + 1),
(i-1,j), (i-1,j-1), (i,j-1), (i + 1,j-1), (i + 1,j) respectively. The conditional neighborhood defini-
tion and assignment for the pixel Pr is given in Eq.(7):

Pr1 ¼ I i; jþ1

Pr2 ¼ I i−1; jþ1

Pr3 ¼ I i−1; j
Pr4 ¼ I i; j−1
Pr5 ¼ I iþ1; j

Pr6 ¼ I iþ1; jþ1

; i is odd

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Pr1 ¼ I i; jþ1

Pr2 ¼ I i−1; j
Pr3 ¼ I i−1; j−1
Pr4 ¼ I i; j−1
Pr5 ¼ I iþ1; j−1
Pr6 ¼ I iþ1; j

; i is even

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð7Þ

where i, j and I denote the row index, column index and intensity value of a pixel respectively.
For pixels located at the sides and corners of the image, neighbor assignment becomes

more challenging. Because, the location of the pixel should be examined in more
varieties than the two alternatives for the pixels in the middle of the image. For the
pixels positioned at this edge, the neighbor assignment process involves a padding
process, because in the case of zero padding for missing neighbors, a zero value must
be assigned. And this operation varies depending on whether the pixel is in the leftmost
column or in the top row, or in the middle and in the top row, etc. Algorithm 1 describes
all possibilities and actions taken accordingly.

2.3 Blurring operation on hexagonal domain

Blur is one of the most common processes in image processing and is actually an example of
low pass filtering. Blurring is used before an edge detection or during a noise removal

Fig. 14 (a) The original Lena image (b) Lena blurred by the Gaussian kernel on the square domain (c) Lena
blurred by the Gaussian kernel on the hexagonal domain
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operation. When blurring is applied to an image, at points where the color transition occurs
quickly, they are actually edges, the transition event occurs smoothly, not suddenly. This

Fig. 15 Histograms of the images in Fig 14 (a) Histogram of the original Lena image (b) Histogram of Lena
blurred by the Gaussian kernel on the square domain (c) Histogram of Lena blurred by the Gaussian kernel on the
hexagonal do-main
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eliminates sharp color transitions. This process implicitly eliminates external pixels, which are
representative of noise. There are a number of methods used for blurring. Some are linear,
some are non-linear. The linear ones involve convolution of the image with a kernel matrix.
Mean, weighted mean and Gaussian are representative of linear ones, while median is
representative of non-linear filters. Figure 9 shows the mean, weighted average and Gaussian
kernels on square and hexagonal domains.

Blurring is sometimes called smoothening or low-pass filtering. Therefore, the mean kernel
is also referred to as the low-pass filtering kernel. The result of the blurring operation on a
sample image as well as histograms by applying the mean, weighted average, Gaussian and
median filters on both the square and hexagonal domains are illustrated in Fig. 10-17
respectively.

One of the application areas of blurring is the noise elimination. Noise appears in the
image as high-frequency components. Therefore, the blurring operation discards the
high-frequency components and permits the low-frequency ones to pass. Thus, blurring
is also called as the low-pass filtering. The application of the basic filters described
above is effective in eliminating the effect of noise. Figure 18 illustrates the performance
of the abovementioned filters under salt-pepper noise on both the square and hexagonal
domains.

2.4 Sharpening on hexagonal domain

Details and edges are highly important in human perception. That is, when an individual
looks at an image, the vision system inherently focuses on fine details and edges, which
play a key role in perception. The visual quality of the image degrades if the details of the
image are reduced or minimized. Image sharpening is used to make the edges and fine
details distinct. Image sharpening clarifies these details by enhancing contrast between
dark and bright regions. In fact, the details in an image are the high-frequency compo-
nents. Applying a high-pass filter to an image makes the details more salient. High-pass
filtering can be implemented by convolving an image by a high-pass filtering kernel.
Figures 17, 18 and 19 show sample image sharpening kernels for square and hexagonal

Fig. 16 (a) The original Lena image (b) Lena blurred by the median operator on the square domain (c) Lena
blurred by the median operator on the hexagonal domain
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domains, as well as the results of the sharpening process and histograms of the sharpened
images respectively.

Obviously, the same sharpening process can be achieved by applying six multiplica-
tion operations on the hexagonal domain rather than implementing eight multiplication
operations on the square domain. The gain (GC) in terms of reducing the computational

Fig. 17 Histograms of the images in Fig 16 (a) Histogram of the original Lena image (b) Histogram of Lena
blurred by the median operator on the square domain (c) Histogram of Lena blurred by the median operator on
the hexagonal domain
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Fig. 18 (a,d,g,h) The salt-pepper noisy Lena image (b,e,h,k) The salt-pepper noisy Lena image that is filtered on
the square domain by mean, weighted average, Gaussian and median filters respectively (c,f,i,l) The salt-pepper
noisy Lena image that is filtered on the hexagonal domain by mean, weighted average, Gaussian and median
filters respec-tively
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complexity for a single pixel is ~1,33. For an image of size m × n, the total GC is 1, 33 ×
m × n.

2.5 Edge detection on hexagonal domain

Edge detection is one of the important and fundamental topics in image processing to find
boundaries of the objects in an image. Edge detection is especially used for image segmen-
tation and feature extraction to be applied in image processing, computer and machine vision.
Features that discriminate objects or regions from each other are extracted from edges. The
importance of edge detection has become more than ever depending on the improvements in
applications and areas that require more discriminative features from images. So far, a number
of edge detection methods have been proposed, including Sobel, Canny, Prewitt and Roberts.
Edge detection is based on distinguishing sudden density changes in the horizontal, vertical
and diagonal axes. On the square domain, there are three main directions where intensity
changes can occur, 0°, 45° and 90°. The counterparts of these directions on the hexagonal
plane are 0°, 60° and 120°. Thus, a hexagonal domain edge detector should reveal the intensity
changes in these directions. Figure 20 shows two different sets of hexagonal edge detector
operators (a,b) as well as the square domain Sobel operator (c). At each set, three operators
from left to right are illustrated for 0°, 60° and 120° respectively.

As seen in Fig. 21, competitive results are achieved with sets of hexagonal edge detectors.
Multiplication is not required in HexEd2. To complete the edge detection process, three
subtraction and two addition operations are sufficient. However, the Sobel edge detection
operator requires four multiplications, four additions and six subtractions. Table 1 presents the
operational requirements of the above-mentioned edge detectors.
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1
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Fig. 19 Image sharpening kernels
on square and hexagonal domains

Fig. 20 (a) Original image (b) Image sharpened on the square domain (c) Image sharpened on the hexagonal
domain
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The total arithmetic complexities of Sobel, HexEd1 and HexEd2 are given in Eq. (8–10),
respectively.

ACSobel ¼ 4� CAð Þ þ 6� CSð Þ þ 4� CMð Þ ð8Þ

ACHexEd1 ¼ 6� CAð Þ þ 9� CSð Þ þ 12� CMð Þ ð9Þ

Fig. 21 Histograms of the images in Fig. 18 (a) Histogram of the image sharpened on the square domain (b)
Histogram of the image sharpened on the hexagonal domain

Table 1 Operational requirements of Sobel, HexEd1 and HexEd2 edge detectors

Method Addition Subtraction Multiplication

Sobel 4 6 4
HexEd1 6 9 12
HexEd2 – 3 0
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Fig. 22 (a) The hexagonal edge
detector operator set 1 (HexEd1)
(b) The hexagonal edge detector
operator set 2 (HexEd2) (c) The
square domain Sobel edge detector
set

Fig. 23 (a) Original image (b)
Sobel edge detection result on
square domain (c) Result of the
edge detection process by HexEd1
(d) Complement of the resulting
image given at c (e) Result of the
edge detection process by HexEd2
(d) Complement of the resulting
image given at e

Multimedia Tools and Applications (2020) 79:7021–7048 7041



ACHexEd2 ¼ 3� CSð Þ ð10Þ
where ACSobel, ACHexEd1, ACHexEd2, CA, CS and CM denote the total arithmetic computational
complexity of Sobel, HexEd1, HexEd2, computational complexity of the addition, subtraction
and multiplication operations respectively.

2.6 Feature extraction and recognition on hexagonal domain

Recognition is one of the most important areas in which image processing is applied. As is
known, machine learning methods that are used to imitate the human perception, relay it to the
computer system and handle it autonomously. Learning methods classify images or objects
according to their characteristic features. Hence, these features should be specific to those
objects to discriminate them efficiently from the others. The face is one of the most important
biometrics used in many areas of life, such as surveillance, security and law. Face recognition
is the art of discriminating individuals by using the facial data. Its high distinctive performance,
as well as the possibility of its collection and processing in real time without any discomfort
and physical contact through devices such as cameras, makes the face data one of the leading
biometrics [8, 13, 25].

Face recognition descriptors are categorized as holistic [6] and local. Local descriptors
pose better performance than the holistic ones regarding robustness against rotation,
noise and illumination factors [27]. Plenty of local descriptors (LBP [1], LGBP [58], CS-
LBP [21], GV-LBP [27], LDP [24], LJBPW [12], RIMFRA [7], LDGP [9], LPQ [55],
LDNP [41, 42], HoG [11], LTP [51], Gabor [33, 57]) have been proposed and appear in
the literature.

Fig. 24 An exemplary calculation of the basic LBP

72

59 65 63

73 71

58

Binary: 110100
Decimal: 52

Fig. 25 An exemplary calculation
of LBP on hexagonal domain
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LBP is one of the basic and pioneering local descriptors that has inspired many followers.
The basic LBP considers the intensity relationship between a pixel and its adjacent neighbors.
If a neighboring pixel’s intensity value is greater than the reference pixel, than a 0, otherwise a
1 is assigned to the corresponding digit of the new LBP value, which denotes the intensity
magnitude relationships between the neighboring pixels and the reference pixel. LBP of a
reference pixel c, considering its P equally apart neighbors on a circle with radius R, is
calculated as follows [5]:

LBPP;R cð Þ ¼ ∑
P−1

P¼0
s Ic−IPð Þ2p ð11Þ

where Ic and IP denote the intensity values of the reference pixel and the Pth neighboring pixel
that is considered respectively. The function s(x) identifies the coefficient of the corresponding
binary digit and defined as:

s xð Þ 1; if x≥0
0; if x < 0

�
ð12Þ

LBP is invariant to monotonic gray-scale changes due to the invariance of the function s(x)
against monotonic gray-scale changes [40]. An exemplary demonstration of the basic LBP is
given in Fig. 22:
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Fig. 26 Identical descriptor values
assigned to different patterns on
both square and hexagonal
domains

Table 2 The recognition accuracy analysis by means of supervised training conducted on Face94, CAS-PEAL-
R1, JAFFE and ORL datasets

Method Accuracies

Face94 YALE CAS-PEAL-R1 JAFFE ORL

Hex_LBP 1000 0,803 0,889 0,940 0,713
LBP 1000 0,807 0,912 0,960 0,825
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2p possible different patterns can be calculated. Following the calculation of the LBP values
for each pixel, the texture of the image (Imxn) is defined by considering the probability
distributions of these LBP values on a histogram, as follows:

H LBPkð Þ ¼ ∑
m

i¼1
∑
n

j¼1
δ k; LBP i; jð Þf g ð13Þ

where δ{.} denotes the Kroneck product function [56].
An equivalent of LBP on hexagonal domain is given in Fig. 23.
Unlike normal square-domain-LBP which produces 28–1 = 255 different identifiers, hexag-

onal LBP produces only 26–1 = 63 distinct values. Besides, the basic LBP produce same
descriptor values for different patterns unless the intensity value of the reference pixel is
involved in during the descriptor calculation stage as illustrated in Fig. 24.

As shown in Fig. 24, even there are two different patterns, the resulting descriptor value is
produced for both. If the intensity of the reference pixel is involved in during the calculation of the
local descriptor value, the abovementioned challenge is easily overcome. A possible solution for the
hexagonal domain is given in Eq. (14).

Hex LBPIc ¼ mod BIc � Ic=63ð Þð Þ; 63ð Þ ð14Þ

Thus, the new descriptor (Hex_LBP) values for the example given in Fig. 24, become asHex _
LBP65 = 41, Hex _LBP25 = 52 respectively. Successfully handling of this similar descriptor assign-
ment challenge significantly affects the recognition accuracy performance. Because, although the
matrices given above represent two different local regions of an image, if it is not considered and
handled properly, the same descriptor is going to be produced for these two different patterns.

To analyze the face recognition accuracy performance, a number of simulations are con-
ducted on the well-known basic datasets, namely, Face94 [28], ORL [45], JAFFE [31], Yale
(http://vision.ucsd.edu/content/yale-face-database), CAS-PEAL-R1 [14]. To ensure uniformity,
some pre-treatment is applied to each image. Each image is initially scaled to 64 × 64. After the
scaling step, facial extraction is performed using the Viola Jones [52] algorithm to eliminate the
effect of unnecessary background factors. The recognition accuracy performance is measured
as presented in Table 2. Obviously, although the range of feature values falls by a quarter, the
recognition accuracy performance is very close to the performance of the ordinary LBP.

3 Conclusion

The hexagonal-pixel-based image processing (HIP) is claimed to have significant advantages
when compared to the ordinary square-pixel-based image processing (SIP) for decades.
However, since all the mathematical, software and hardware background that have been used
since the date of beginning of the image processing science have based on square domain, HIP
has not gained the attention, which it deserves. There is no standardized library nor package to
process an image hexagonally. Therefore, a framework is developed for use in future research
on HIP, in which the hexagonal equivalents of some of the basic processes of ordinary image
processing are presented in this article. The most prominent benefit of HIP against SIP is the
gain provided in terms of computing complexity and memory area. Since the same information
and operations that are performed in SIP can be implemented by a less number of steps, the
burden of processing and memory occupation is alleviated. As presented in the article, the
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contours of a face can be extracted by only processing six neighbor relationship rather than
eight like done is SIP. Furthermore, operations such as blurring, sharpening and noise elimina-
tion can be also handled remarkably by utilizing less number of operations that conclude at
tiring the processor less. Lastly, the face recognition operation can be achieved at very close
rates to the SIP by expressing each feature by a less number of bits. For future work, it is
intended to elaborate on the face recognition in HIP and realize the hexagonal equivalents of the
state-of-the-art descriptors that have been already presented for SIP.
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